Pertanyaan
jika a= 1 dan b=(5+2sqrt{6} [/tex] maka tentukan dari a².b adalah
(sqrt{3} [/tex]+sqrt{2} [/tex]
(sqrt{3} [/tex]+sqrt{2} [/tex]
Ditanyakan oleh: USER2776
175 Dilihat
175 Jawaban
Jawaban (175)
a=[tex] \frac{1}{ \sqrt{3}+ \sqrt{2} } [/tex]
b = [tex]5+2 \sqrt{6} [/tex]
a²b = [tex] (\frac{1}{ \sqrt{3}+ \sqrt{2} } )( \frac{1}{ \sqrt{3}+ \sqrt{2} } ) (5+2 \sqrt{6} )[/tex]
= [tex] \frac{5+2 \sqrt{6} }{7+2 \sqrt{6} } x \frac{7-2 \sqrt{6} }{7-2 \sqrt{6} }= \frac{11+4 \sqrt{6} }{25} [/tex]
b = [tex]5+2 \sqrt{6} [/tex]
a²b = [tex] (\frac{1}{ \sqrt{3}+ \sqrt{2} } )( \frac{1}{ \sqrt{3}+ \sqrt{2} } ) (5+2 \sqrt{6} )[/tex]
= [tex] \frac{5+2 \sqrt{6} }{7+2 \sqrt{6} } x \frac{7-2 \sqrt{6} }{7-2 \sqrt{6} }= \frac{11+4 \sqrt{6} }{25} [/tex]
a = 1 / (√3 + √2)
b = 5 + 2√6
a² . b
= (1 / (√3 + √2))² . (5 + 2√6)
= [1 / (√3 + √2) * 1 / (√3 + √2)] . (5 + 2√6)
= [1 / (5 + 2√6)] . (5 + 2√6)
= (5 + 2√6) / (5 + 2√6)
= 1
b = 5 + 2√6
a² . b
= (1 / (√3 + √2))² . (5 + 2√6)
= [1 / (√3 + √2) * 1 / (√3 + √2)] . (5 + 2√6)
= [1 / (5 + 2√6)] . (5 + 2√6)
= (5 + 2√6) / (5 + 2√6)
= 1