Question
Compute the resistance in ohms of a silver block 10 cm long and 0.10 cm2 in cross-sectional area. ( = 1.63 x 10-6 ohm-cm)
Asked by: USER9381
121 Viewed
121 Answers
Answer (121)
The resistance of the silver block is given by
[tex]R= \frac{\rho L}{A} [/tex]
where
[tex]\rho=1.63 \cdot 10^{-6} \Omega \cdot cm[/tex] is the silver resistivity
[tex]L=10 cm[/tex] is the length of the block
[tex]A=0.10 cm^2[/tex] is the cross-sectional area of the block
If we plug the data into the equation, we find the resistance of the silver block:
[tex]R= \frac{(1.63 \cdot 10^{-6} \Omega \cdot cm)(10 cm)}{0.10 cm^2}=1.63 \cdot 10^{-4} \Omega [/tex]
[tex]R= \frac{\rho L}{A} [/tex]
where
[tex]\rho=1.63 \cdot 10^{-6} \Omega \cdot cm[/tex] is the silver resistivity
[tex]L=10 cm[/tex] is the length of the block
[tex]A=0.10 cm^2[/tex] is the cross-sectional area of the block
If we plug the data into the equation, we find the resistance of the silver block:
[tex]R= \frac{(1.63 \cdot 10^{-6} \Omega \cdot cm)(10 cm)}{0.10 cm^2}=1.63 \cdot 10^{-4} \Omega [/tex]
Answer:
1.6 x 10^-4 Ω
Explanation: