Question
Which function has a phase shift of π/2 to the right
A.) y = 2sin( 1/2 x + pi )
B.) y = 2sin(2x + pi )
C.) y = 2sin(x + pi/2)
D.) y = 2sin(x - pi )
E.) y = 2sin(2x - pi )
A.) y = 2sin( 1/2 x + pi )
B.) y = 2sin(2x + pi )
C.) y = 2sin(x + pi/2)
D.) y = 2sin(x - pi )
E.) y = 2sin(2x - pi )
Asked by: USER6252
234 Viewed
234 Answers
Answer (234)
The answer is the option E, which is: E.)[tex] y = 2sin(2x - \pi )
[/tex]
The explanation for this answer is shown below:
1. By definition, you have the phase shift is:
[tex] aSin(bx+c)\\ pshift=-c/b [/tex]
2. When you substitute the values from the function [tex] y = 2sin(2x -\pi ) [/tex], where [tex] c=-\pi [/tex] and [tex] b=2 [/tex], you obtain:
[tex] pshift=-(-\pi )/2=\pi /2 [/tex]
Answer:
Your answer is going to be E.) y = 2sin(2x - pi ).
