x2 + y2 − 4x + 12y − 20 = 0 (x − 6)2 + (y − 4)2 = 56 x2 + y2 + 6x − 8y − 10 = 0 (x − 2)2 + (y + 6)2 = 60 3x2 + 3y2 + 12x + 18y − 15 = 0 (x + 2)2 + (y + 3)2 = 18 5x2 + 5y2 − 10x + 20y − 30 = 0 (x + 1)2 + (y − 6)2 = 46 2x2 + 2y2 − 24x − 16y − 8 = 0 x2 + y2 + 2x − 12y − 9 = 0 Pairs arrowBoth arrowBoth arrowBoth arrowBoth

Responsive Ad Header

Question

Grade: Education Subject: mathematics
x2 + y2 − 4x + 12y − 20 = 0 (x − 6)2 + (y − 4)2 = 56 x2 + y2 + 6x − 8y − 10 = 0 (x − 2)2 + (y + 6)2 = 60 3x2 + 3y2 + 12x + 18y − 15 = 0 (x + 2)2 + (y + 3)2 = 18 5x2 + 5y2 − 10x + 20y − 30 = 0 (x + 1)2 + (y − 6)2 = 46 2x2 + 2y2 − 24x − 16y − 8 = 0 x2 + y2 + 2x − 12y − 9 = 0 Pairs arrowBoth arrowBoth arrowBoth arrowBoth
Asked by:
326 Viewed 326 Answers

Answer (326)

Best Answer
(1582)
For this case, what we must do is fill squares in all the expressions until we find the correct result.
 We have then:
 
 x2 + y2 − 4x + 12y − 20 = 0 x2 + y2  − 4x + 12y = 20
 x2  − 4x + y2 + 12y = 20
 x2  − 4x + (12/2)^2 + y2 + 12y  + (-4/2)^2 = 20 + (12/2)^2 + (-4/2)^2
 x2  − 4x + (6)^2 + y2 + 12y  + (-2)^2 = 20 + (6)^2 + (-2)^2
 x2  − 4x + 36 + y2 + 12y  + 4 = 20 + 36 + 4
 (x − 2)2 + (y + 6)2 = 60 

 
3x2 + 3y2 + 12x + 18y − 15 = 0 
 
x2 + y2 + 4x + 6y − 5 = 0 
 x2 + y2 + 4x + 6y  = 5 
 x2  + 4x + (4/2)^2 + y2 + 6y + (6/2)^2 = 5 + (4/2)^2 + (6/2)^2 
 x2  + 4x + (2)^2 + y2 + 6y + (3)^2 = 5 + (2)^2 + (3)^2 
 x2  + 4x + 4 + y2 + 6y + 9 = 5 + 4 + 9 
 (x + 2)2 + (y + 3)2 = 18 

 2x2 + 2y2 − 24x − 16y − 8 = 0
 x2 + y2 − 12x − 8y − 4 = 0
 x2 + y2 − 12x − 8y = 4 
 x2 − 12x + (-12/2)^2 + y2 − 8y + (-8/2)^2 = 4 + (-12/2)^2 + (-8/2)^2
 x2 − 12x + (-6)^2 + y2 − 8y + (-4)^2 = 4 + (-6)^2 + (-4)^2
 x2 − 12x + 36 + y2 − 8y + 16 = 4 + 36 + 16
 (x − 6)2 + (y − 4)2 = 56 

 x2 + y2 + 2x − 12y − 9 = 0
 x2 + y2  + 2x - 12y = 9
 x2  + 2x + y2 - 12y = 9
 x2  + 2x + (2/2)^2 + y2 - 12y  + (-12/2)^2 = 9 + (2/2)^2 + (-12/2)^2
 x2  + 2x + (1)^2 + y2 - 12y  + (-6)^2 = 9 + (1)^2 + (-6)^2
 x2  + 2x + 1 + y2 - 12y  + 36 = 9 + 1 + 36
 (x + 1)2 + (y − 6)2 = 46